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Abstract: Coronary Artery Disease (CAD) occurs when the coronary vessels become hardened and
narrowed, limiting blood flow to the heart muscles. It is the most common type of heart disease and
has the highest mortality rate. Early diagnosis of CAD can prevent the disease from progressing and
can make treatment easier. Optimal treatment, in addition to the early detection of CAD, can improve
the prognosis for these patients. This study proposes a new method for non-invasive diagnosis
of CAD using iris images. In this study, iridology, a method of analyzing the iris to diagnose
health conditions, was combined with image processing techniques to detect the disease in a total of
198 volunteers, 94 with CAD and 104 without. The iris was transformed into a rectangular format
using the integral differential operator and the rubber sheet methods, and the heart region was
cropped according to the iris map. Features were extracted using wavelet transform, first-order
statistical analysis, a Gray-Level Co-Occurrence Matrix (GLCM), and a Gray Level Run Length
Matrix (GLRLM). The model’s performance was evaluated based on accuracy, sensitivity, specificity,
precision, score, mean, and Area Under the Curve (AUC) metrics. The proposed model has a 93%
accuracy rate for predicting CAD using the Support Vector Machine (SVM) classifier. With the
proposed method, coronary artery disease can be preliminarily diagnosed by iris analysis without
needing electrocardiography, echocardiography, and effort tests. Additionally, the proposed method
can be easily used to support telediagnosis applications for coronary artery disease in integrated
telemedicine systems.

Keywords: iris; iridology; coronary artery disease; diagnosis; machine learning

1. Introduction

Approximately 17.9 million people die annually due to cardiovascular disease, about
30% of global deaths [1]. The American Heart Association reports that about half of
American adults are affected by heart disease. If precautions are not taken, then by 2030,
the global death toll is projected to rise to 22 million [2]. Coronary Artery Disease (CAD)
has the highest mortality rate among cardiovascular diseases [3]. Coronary arteries are the
arteries on the surface of the heart that supply the heart with blood. The blood pumped
by the heart first carries oxygen to the heart muscles through the coronary arteries. Three
main coronary arteries exist: the left anterior descending artery, the left circumflex artery,
and the right coronary artery. CAD occurs due to the decrease or complete cessation of
blood flow to the heart muscle caused by the hardening of these coronary arteries [4,5]. The
main cause of hardening (plaque formation) in the vessels is the accumulation of fatty or
fibrous materials on the inner walls of the vessels, also called atherosclerosis. Plaques are
mostly composed of lipids, cholesterol, and apoptosis residues which reduce blood flow,
increasing the risk of blood clot formation and embolization [6].
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This study defines patients with CAD as patients who are 18 years or older and
have at least one clinical scenario of a chronic coronary syndrome (CCS) based on the
2019 European Society of Cardiology (ESC) guidelines for the diagnosis and treatment of
CCS. The clinical scenarios for CAD include: (i) patients with suspected CAD and stable
anginal symptoms and/or dyspnea, (ii) patients with newly onset heart failure (HF) or
left ventricular (LV) dysfunction and suspected CAD, (iii) asymptomatic and symptomatic
patients, or recently revascularized patients with stable symptoms less than one year
after ACS, (iv) asymptomatic and symptomatic patients more than one year after the
diagnosis of CCS or revascularization, (v) patients with angina and suspected vasospastic
or microvascular disease, and (vi) asymptomatic participants detected to have CAD during
routine screenings.

A series of laboratory tests and imaging methods are used to diagnose CAD. The
diagnosis is made by evaluating the patient’s complaints, family history, risk factors, and the
results of physical examination findings. To diagnose CAD, blood tests, electrocardiography
(ECG), effort tests, Holter tests, and echocardiography (ECHO) are commonly used tests [7,8].
The onset of symptoms in patients with CAD can range from simple nonspecific chest pain
to a direct heart attack or even death. Neglected findings can lead to a heart attack; even
if the patient does not die, severe damage to the heart muscle can occur. Therefore, early
diagnosis is very important in CAD [4]. In recent years, the iris, which contains many nerve
endings, has been used for the early diagnosis of diseases. The iris contains approximately
28,000 neural networks communicating between the brain and organs [9]. If an organ is not
functioning properly, information is sent to the brain about this situation, which is reflected
in the iris as a change in pattern, color, or characteristic feature. Iridology is the study of
the changes in pattern, texture, color, and structure that occur in the special regions of the
iris and their relationship with various diseases. As a result of various studies within the
field of iridology, iris maps were created that show the regions in the iris that are related
to specific organs and tissues. Bernard Jensen finalized the Iris map, which consists of
166 sections, 80 on the right and 86 on the left [10,11].

1.1. Related Work on IRIS

When reviewing the literature, iridology studies investigate the anatomical changes
in specific areas of the iris, which are typically caused by functional changes in a partic-
ular organ or tissue [12]. Ma et al. discovered with significant accuracy that diseases
can be diagnosed using geometric features such as the size of the pupil, shape, and
shape of the iris [13]. Samant and Agarwal conducted a study to diagnose diabetes
using various machine-learning techniques by analyzing the texture of the iris pancre-
atic region. The study found an accuracy rate of around 90% [14]. Similarly, many other
models for diagnosing diabetes have been proposed by researchers in recent years [15–17].
Rehman et al. proposed an iridology-based approach for diagnosing chronic liver dis-
ease [18]. They found that iris analysis combined with the ensemble learning method
had an accuracy rate of approximately 98%. In the literature, there are studies on dis-
eases of organs such as the kidney [19] and brain [20] using iridology, and there are
various studies on cholesterol values in the blood [12,21–23]. In line with these studies,
iridology has been shown to be effective in the non-invasive early diagnosis of diseases.
However, there is a limited amount of research on the use of iris analysis for the early
diagnosis of heart diseases. Various researchers around the world have made significant
discoveries in non-invasive image processing and artificial intelligence-based diagnosis by
using iris images related to the heart, which is a vital organ for maintaining life functions.
Gunawan et al. [24] proposed a method for detecting coronary artery disease using the
Support Vector Machines (SVM) classifier with five Gray-Level Co-Occurrence Matrix
(GLCM) features. In their study involving 250 volunteers, the features of 100 volunteers
were used as test data, and the Gaussian kernel SVM classifier achieved 91% accuracy in
detecting coronary artery disease. Putra et al. [25] developed a system with 90 volunteers
utilizing iris analysis to detect cardiac issues. They employed the Principal Component
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Analysis (PCA) and Gray-Level Co-Occurrence Matrix (GLCM) methods to extract features
in the system they developed, and they performed the classification process using neural
networks. They achieved a classification accuracy of 77.5% for the test data using GLCM
features, and they achieved 90% accuracy using PCA features. The PCA feature extraction
method and SVM classifier were utilized in the method proposed by Permatasari et al. [26].
The highest accuracy achieved was reported to be 80%. Kusuma et al. [27] proposed a
model for detecting cardiac abnormalities by acquiring and using iris images with a mobile-
based system. The ratio of black and white pixels obtained after converting the analysis
region to black and white format was used as a feature. The accuracy performance value
for the test data, as classified by the thresholding method, was measured at 83.3%. These
studies demonstrate the effectiveness of using iridology for the diagnosis of CAD.

1.2. Research Gaps of Previous Work on IRIS/CAD

When studies in the literature are examined, it is seen that various methods are used to
diagnose heart diseases via the iris early. However, it appears that no specific heart disease
has been evaluated in depth. These studies follow a standard procedure, including finding
the iris positions, performing the rectangular transformation, determining the analysis
region, extracting the features from the analysis region, and classification. The differences
in the studies begin after the determination of the analysis region. When the studies are
examined at this stage, it is seen that the sub-components were formed by applying the
wavelet transform to the analysis region, and although successful results were obtained
in the studies conducted for the diagnosis of diabetes, this method has not been tested
for heart diseases. In this study, more comprehensive and qualified results were obtained
compared to the existing studies for the diagnostics of CAD by increasing the number of
features to be extracted using the wavelet transform and the number of classifiers.

1.3. Contribution of This Paper

In this study, a new diagnostic approach is proposed using iris images for the non-
invasive detection of CAD. The data used in the study were collected from 198 volunteers,
including 94 individuals with CAD and 104 control individuals, from the Cardiology
Polyclinic of Giresun University Health Practice and Research Hospital. The study includes
a feature selection method based on wavelet transform, resulting in 136 features, including
statistical, GLCM, and Gray-Level Run Length Matrix (GLRLM) features. According to
their rank values, the best 25, 50, and 75 features were selected using the Relieff method. A
total of 22 classifiers belonging to the Decision Trees (DT), Naive Bayes (NB), Support Vector
Machines (SVM), k-Nearest Neighbor (kNN), and Neural Networks (NN) families, which
are commonly used for classification, were applied. The performance metrics calculated
in the study indicate that the proposed model is more successful in detecting CAD than
existing models. Detailed comparisons and evaluations are provided in the Results and
Discussion section.

The main contributions of this study can be summarized as follows:

• A novel diagnostic approach is proposed for the non-invasive detection of CAD using
iris images.

• The Relieff feature selection method based on wavelet transform is introduced, result-
ing in 136 features including statistical, GLCM, and GLRLM features.

• A comparison is made between different classifiers, such as DT, NB, SVM, kNN, and
NN, and the best-performing classifier is identified.

• The proposed model was compared with existing models and was more successful in
detecting CAD.

2. Materials and Methods

In the study methodology, a standard design was carried out to diagnose CAD through
a non-invasive procedure. The flow chart of the study is shown in Figure 1.
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Figure 1. Proposed methodology.

2.1. Subject Selection for Data Acquisition

In this study, the dataset was created by collecting iris images from 198 subjects
with the volunteers’ consent and with the assistance of relevant doctors from the Giresun
University Health Practice and Research Hospital Cardiology Polyclinic. Ethics committee
approval was obtained for data collection per the decision of Samsun University Clinical
Research Ethics Committee, numbered SUKAEK-2022 12/21, dated 23 November 2022. Out
of the 198 volunteers, 94 were diagnosed with CAD, while 104 were healthy individuals
without the disease. The incidence of CAD varies according to gender, with it being more
common in men [1]. As a result, the proportion of men among the volunteers included in
the study is higher than that of women. Of the volunteers aged between 19 and 86 who
participated in the study, 156 were men and 42 were women. Table 1 and Figure 2 provide
detailed information about the age, gender, and health status of the volunteers.

Table 1. Age and gender information of volunteers.

Subject Number of
Men

Number of
Women Mean Age Standard

Deviation Total

Healthy 77 27 55 14.2 104
CAD 79 15 60 9.4 94

2.2. Eye Image Acquisition

Left eye images of the subjects labeled as having CAD and of those labeled as healthy
by their respective doctors were collected. Eye images were taken using a Nikon D3300
DSLR camera with a Nikon AF-S DX Micro Nikkor 85 mm F/3.5G VR lens and with macro
ring flash illumination. The resulting images were 6000 × 4000 in size and had a resolution
of 24 megapixels. Example images for both healthy and CAD volunteers are provided in
Figure 3.
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2.3. Eye Image Pre-Processing

After obtaining the eye images, they needed to go through several pre-processing
steps to prepare them for analysis. Algorithm 1 and Figure 4 illustrate the eye image
pre-processing process step-by-step.

Algorithm 1 Eye image pre-processing algorithm

(1) Input: Eye image
(2) Iris localization from the eye image

(a) Localization pupil using Daugman’s Integral Differential Operator
(b) Localization iris using Daugman’s Integral Differential Operator

(3) Iris normalization using Daugman’s rubber sheet Technique
- Normalized iris becomes a fixed size: 360 × 720

(4) ROI cropped according to the iris map in Figure 4
- The ROI size is 190 × 120

(5) ROI enhancement using the CLAHE method
(6) Output: ROI image
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The techniques used for the image pre-processing process are as follows:

2.3.1. Iris Localization

At this stage, the pupil and iris positions were determined from the image. The iris
positions in the image converted to the gray format were determined using the integral
differential operator (IDO) [28]. The IDO method can accurately determine the inner
and outer borders of the iris by using different values of pupil and sclera color. The
mathematical expression of the method is provided in the equation below.

max
r,x0,y0

∣∣∣∣∣∣∣∣∣Gσ(r)
∂

∂r

∮
r,x0,y0

I(x, y)
2πr

ds

∣∣∣∣∣∣∣∣∣ (1)

Here, the expression I(x, y) denotes the color value of the (x, y) position in the image I.
x0 and y0 represent the coordinates of the potential center point, and the symbol r represents
the distance to the potential center point. Gσ represents the Gaussian function with σ

standard deviation.



Diagnostics 2023, 13, 1081 7 of 20

2.3.2. Iris Normalization

The normalization process was the next step after determining the iris’s inner and
outer positions. The iris was transformed into a rectangular format in the normalization
process, standardizing it and making it easier to analyze. As a result of the normalization
process, the rectangular iris image was resized to a fixed size of 360 × 720. Daugman’s
rubber sheet method, as shown in Figure 5, is one of the most commonly used normalization
methods, and it was used in this study.
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The remapping of the iris image from the I(x, y) cartesian coordinates to the polar
representation can be expressed as the following equation.

I(x(r, θ), y(r, θ))→ I(r, θ) (2)

where
x(r, θ) = (1− r)xp(θ) + rxl(θ) (3)

y(r, θ) = (1− r)yp(θ) + ryl(θ) (4)

Here, the I(x, y) is the iris region, (x, y) represents the Cartesian coordinates, (r, θ)
represents the normalized polar coordinates, and xp, yp and xl, yl are expressions that
denote the pupil and iris boundary coordinates in the θ direction.

2.3.3. Region of Interest (ROI)

After completing the normalization process, the Region of Interest (ROI) was cropped
according to the heart region in the left iris in the iris map shown in Figure 6. The heart
region is located in the left iris between the 2 and 4 o’clock positions. After converting the
circular iris image to a fixed-size rectangle, the heart region in the iris was cropped.
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2.3.4. Enhancement of ROI

Histogram equalization is a commonly used image enhancement technique due to
its high performance and simplicity. It redistributes the probabilities of the occurrence of
gray-levels so that the histogram of the output image is closer to a uniform distribution.
Although the method generally gives good results, it may not achieve the desired improve-
ment in images with darker or lighter colored pixels than other pixel values. To address
this limitation, instead of using the whole image for equalization, the image was divided
into certain regions, and the histogram equalization of the regions increased image im-
provement performance. The Contrast Limited Adaptive Histogram Equalization (CLAHE)
method [29] was used for this purpose. In this study, the CLAHE method was used for ROI
correction.

2.4. Iris Feature Extraction

Because the iris contains many blood vessels and nerves, it has a very rich structural
pattern. Many researchers have extracted features from the iris using various methods
such as the Gabor Filter, Hilbert Transform, and Discrete Wavelet Transform (DWT). In
this study, DWT transformation was used for feature extraction. The process of feature
extraction is outlined in Algorithm 2.

Algorithm 2 Feature extraction process

(1) Input: ROI Image
(2) Perform 1 Level 2D-DWT to ROI image

- Four sub-bands occur (cA, cV, cD, cH)
(3) Extract features from sub-bands

(a) Extract 5 first-order statistical features as shown in Table 2
(b) Extract 22 GLCM-based features as shown in Table 3
- Formation of the 8 × 8 GLC matrix using θ = (00, 450, 900, 1350) with d = 1. Values for each

direction are found and averaged
(c) Extract 7 GLRLM-based features as shown in Table 4
- Formation of the GLRL matrix using θ = (00, 450, 900, 1350) with quantize level = 16. Values

for each direction are found and averaged
(4) Fusion of features (5 statistical + 22 GLCM + 7 GLRLM = 34 features for each sub-band)
(5) Output: feature vector with 136 features

DWT decomposes an image into four subsampled images, as shown in Figure 7,
namely the approximation (LL), horizontal (HL), vertical (LH), and diagonal (HH) images.
The input image of size N × N is divided into four sub-images, each of size N/2 × N/2.
Each sub-image contains information from different frequency components [30].
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In Figure 7, the LL sub-band was obtained by applying low-pass filtering to both rows
and columns, resulting in an image with less noise than the other sub-bands. The HH
band was obtained by applying high-pass filtering in both directions, and it contains higher
frequency components than the other bands. The HL and LH sub-bands were obtained
by using low-pass filtering in one direction and high-pass filtering in the other. The LH
sub-band mostly contains vertical detail information corresponding to horizontal edges,
while the HL sub-band contains horizontal detail information corresponding to vertical
edges. The HL, LH, and HH sub-bands add high-frequency detail to the approximate
image. The image is typically decomposed multiple times using the DWT, usually starting
with the LL band [31].

A block diagram of the feature extraction process is shown in Figure 8. In Figure 8,
cA describes the approximation coefficients matrix, and cH, cV, and cD describe the detail
coefficients’ matrices (horizontal, vertical, and diagonal, respectively). A total of 34 features
were extracted for each of the four coefficients’ matrices (cA, cH, cV, cD). These features
included five statistical features, 22 GLCM (Gray Level Co-occurrence Matrix) features, and
7 GLRLM (Gray Level Run Length Matrix) features. At the end of the feature extraction
process, 136 feature vectors (34 for each region) were obtained.
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This study used a 1-level DWT decomposition to analyze the ROI image. Statistical
features and features obtained using GLCM and GLRLM were extracted for each sub-band.
Figure 9 provides an example of extracting features for a sample image. The attributes of
the extracted features are described in the following headings.

2.4.1. Statistical Features

The study calculated and used the ROI’s five first-order statistical features: mean
density, standard deviation, entropy, skewness, and kurtosis. The mathematical expres-
sions for these parameters obtained from the gray-level ROI are provided in Table 2.
Five statistical features were obtained for each sub-band.
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N1
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2.4.2. Gray-Level Co-Occurrence Matrix (GLCM) Features

Using only first-order statistical approaches is insufficient for detecting and grading
textures or patterns in an image. These features provide information about the intensity
distribution but do not reveal the relationship between pixels. To gain information about
neighboring pixels, GLCM and related features offered by Haralick et al. [32] can be used.
GLCM is a gray-level matrix that characterizes, quantifies, and explores the distribution of
gray-level intensities. Direction and neighborhood information is used when calculating
GLCM. As shown in Figure 10, the 0◦, 45◦, 90◦, and 135◦ directions were used. When
creating the GLCM, the grayscale value of each pixel in the image was calculated as given
in Equation (5).

P(i, j) =
P(i, j, d, θ)

∑i=1 ∑j=1 P(i, j, d, θ)
(5)
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After the GLCM of the image was created, the textural features of the image were
extracted from this matrix. This study used 22 parameters [32–34] to extract features using
GLCM. The names, mathematical expressions, and definitions of these parameters are
provided in Table 3.

Table 3. GLCM features.

Feature Name Formula Feature Name Formula

Auto correlation
N
∑

i=1

N
∑

j=1
(i.j)p(i, j)

Information measure of
correlation 1

HXY−HXY1
max(HX,HY)

Cluster prominence
N
∑

i=1

N
∑

j=1
(i + j− 2u)3 p(i, j)

Information measure of
correlation 2

√
1− exp[−2(HXY2− HXY)]

Cluster shade
N
∑

i=1

N
∑

j=1
(i + j− 2u)4 p(i, j) Inverse difference moment

N
∑

i=1

N
∑

j=1

p(i,j)
1+|i−j|

Contrast
N
∑

i=1

N
∑

j=1
(i− j)2 p(i, j) Maximum probability maxi,j p(i, j)

Correlation
N
∑

i=1

N
∑

j=1

(
i−µx

σx

)( j−µy
σy

)
p(i, j) Sum average

2N
∑

k=2
kpx+y(k)

Difference entropy −
N−1
∑

k=0
px−y(k)log px−y(k) Sum entropy −

2N
∑

k=2
px+y(k)log px+y(k)

Difference variance
N−1
∑

k=0

(
k− µx−y

)2
px−y(k) Sum of squares

N
∑

i=1

N
∑

j=1
p(i− µ)2 p(i, j)

Dissimilarity
N
∑

i=1

N
∑

j=1
|i− j|.p(i, j) Sum variance

2N
∑

k=2

(
k− µx+y

)2
px+y(k)

Energy
N
∑

i=1

N
∑

j=1
p(i, j)2 Maximal correlation coefficient

√
λ2(Q(i, j))

Entropy −
N
∑

i=1

N
∑

j=1
p(i, j)log p(i, j) Inverse difference normalized

N−1
∑

i=0

N−1
∑

j=0

1
1+(i−j)2 p(i, j)

Homogeneity
N
∑

i=1

N
∑

j=1

p(i,j)
1+(i−j)2

Inverse difference moment
normalized

N−1
∑

i=0

N−1
∑

j=0

p(i,j)(
1+ |i−j|

N

)2

The features listed in Table 3 were calculated for the four sub-bands obtained after the
wavelet transform. For each wavelet component, the features calculated by considering
pixels in four directions and one neighbor distance were averaged. This resulted in the
creation of 22 GLCM attributes for each region.



Diagnostics 2023, 13, 1081 12 of 20

2.4.3. Gray-Level Run Length (GLRL) Matrix Features

The Gray-Level Running Length Matrix (GLRLM) method is based on calculating the
number of different gray-level lengths [32]. It is a way of extracting higher-order statistical
texture features. A gray-level run is a linear array of adjacent image points with the same
gray-level value. The gray-level run length is the number of image points in the array.
GLRLM is a two-dimensional matrix and is used for texture feature extraction. In this study,
seven attributes, along with their names, mathematical equations, and descriptions, are
provided in Table 4, which were used when using GLRLM.

Table 4. GLRLM features.

Feature Name Formula Feature Name Formula

Short Run Emphasis
(SRE)

G
∑

i=1

R
∑

j=1

p( i,j|θ)
j2 /

G
∑

i=1

R
∑

j=1

p( i,j|θ)
1

Run Length
Non-Uniformity

(RLN)

R
∑

j=1

(
G
∑

i=1
p( i, j|θ)

)2

/
G
∑

i=1

R
∑

j=1
p( i, j|θ)

Long Run Emphasis
(LRE)

G
∑

i=1

R
∑

j=1
j2 × p( i, j|θ)/

R
∑

j=1
p( i, j|θ)

Low Gray-Level Run
Emphasis
(LGRE)

G
∑

i=1

R
∑

j=1

p( i,j|θ)
i2 /

G
∑

i=1

R
∑

j=1
p( i, j|θ)

Gray-Level
Non-Uniformity (GLN)

G
∑

i=1

(
R
∑

j=1
p( i, j|θ)

)2

/
G
∑

i=1

R
∑

j=1
p( i, j|θ)

High Gray-Level Run
Emphasis (HGRE)

G
∑

i=1

R
∑

j=1
i2 × p( i, j|θ)/

G
∑

i=1

R
∑

j=1
p( i, j|θ)

Run Percentage (RP) 1
N

G
∑

i=1

R
∑

j=1
p( i, j|θ)

2.5. Feature Selection

Feature selection is an important step in reducing complexity and saving time in
machine learning methods for classification problems. It makes classification more reliable
by eliminating unnecessary data. Relieff, a widely used filter-based feature selection
method, was preferred in this study. The algorithm developed by Kira et al. performs
the selection process by weighting the parameters according to their relationship [35].
Kononenko created this algorithm, as the method did not give successful results in datasets
with multiple classes [36]. The method selects a sample from the dataset and performs
feature selection by creating a model based on the proximity of the sample to other samples
in its class and based on its distance from different classes. In this study, the best 25, 50, and
75 features were selected among 136 features obtained from ROI. There were four sub-band
images, each containing 34 features. Choosing specific features from each sub-band and
including different feature groups can be beneficial in more effectively determining the
impact of sub-bands and methods on performance. This approach helps to accurately
identify the performance effects of sub-bands and methods.

2.6. Classification

In classification, there are two main types: supervised and unsupervised. In supervised
classification, the model performance is determined by the test data in models created
using labeled data. In this study, 22 classifiers from 5 different classifier families, which are
commonly used in literature, were employed.

(a) Decision Trees: Fine, Medium, and Coarse Trees
(b) Naive Bayes: Gaussian and Kernel types
(c) Support Vector Machines with four kernels: Quadratic, Cubic, Fine Gaussian, Medium

Gaussian, and Coarse Gaussian
(d) k-Nearest Neighborhood (kNN): Fine, Medium, Coarse, Cosine, Cubic, and Weighted
(e) Neural Networks: Narrow, Medium, Wide, Bilayered, and Trilayered
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Although the classifiers mentioned above are commonly used in various fields, the
MATLAB Classification Learner application, which includes standard parameters, was
used in this study to avoid bias that may occur from manual selection of the parameters.
The training and test data were divided into five groups using the fivefold cross-validation
technique for the classification process. The performance values were obtained by taking
the average of the parameters calculated five times.

2.7. Performance Evaluation

Various evaluation metrics were used to determine the success of the models created
during the classification process. These metrics are based on a table called the confusion
matrix [37]. Each row of the matrix represents the actual values, and each column represents
the predicted values. A two-class confusion matrix and the values it will take are shown in
Figure 11.
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In Figure 11, TP refers to true positive results, FN refers to false negative results, FP
refers to false positive results, and TP refers to true negative results. The metrics used in
this study to determine the classification performance using the confusion matrix are listed
in Table 5.

Table 5. Performance metrics.

Metric Symbol Formula

Sensitivity SNS TP
TP+FN

Specificity SPC TN
FP+TN

Precision PRC TP
TP+FP

Accuracy ACC TP+TN
TP+FN+FP+TN

F1 score F1 2× PRC x SNS
PRC + SNS

Geometric Mean GM
√

SNS x SPC

Accuracy is the ratio of correct guesses to the total number of values. A high value
indicates high accuracy. Specificity is the ratio of correct negative predictions to the total
number of negatives. Precision is the ratio of correctly predicted positive observations
to the total predicted positive observations, and it measures the accuracy of predictions
for positive class. Sensitivity is the ratio of correctly predicted positive observations to all
observations in the actual positive class. The F1-score is the harmonic mean of the ratio of
true positive values (sensitivity) and precision. It is a measure of how well the classifier
is performing. The geometric mean is a metric that measures the balance in classification
between majority and minority classes. A low value indicates poor performance in the
classification of positive cases, even if it correctly classified negative cases [38,39]. In
addition to these metrics, the Receiver Operating Characteristic (ROC) curve was also used
to measure performance. The ROC curve is a graphical representation of the performance
of a classifier over all possible threshold values. It has False Positive Rate (FPR) on the
x-axis and True Positive Rate (TPR) on the y-axis. The Area Under Curve (AUC) is the area
under the ROC curve. The AUC value ranges from 0 to 1, and the closer the value is to 1,
the better the model’s performance [40].
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3. Results and Discussion

In this study, iris images of 198 volunteers were analyzed to detect coronary artery
disease. The relationship between the 136 features obtained from the iris images and the
target variable was first investigated. Then, the performance evaluations obtained from
the classification process using the best 25, 50, and 75 features determined by the Relieff
feature selection method were presented.

3.1. Feature Analysis

The correlation coefficient values showing the relationship of the 136 features obtained
from the wavelet transform with the target variable are illustrated in Figure 10. In the
ROI, which is divided into four components after the wavelet transform, 34 features, five
statistical, 22 GLCM, and seven GLRLM features were extracted for each component. The
four components were labeled cA, cH, cV, and cD. In Figure 12, the components and
attributes are presented in this order.
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The highest correlation value of 0.6734 belonged to the 134th feature, RP, which is a
GLRLM attribute of the cD sub-band. There were 13 features in total with a correlation
value above 0.6, three features with values between 0.5 and 0.6, two features between 0.4
and 0.5, 24 features between 0.3 and 0.4, and 27 features between 0.2 and 0.3. Among
the 10 features with the highest correlation coefficients, there were three features in the
cA component, two in the cH component, two in the cV component, and three in the
cD component. Nine of these features belonged to GLRLM features, and one of them
belonged to a GLCM feature not among the 10 features with the highest 1st-order statistical
feature coefficients. Out of the nine GLRLM attributes, LRE 4, LGRE 3, and RP were
included twice. RP was the two best attributes. The GLCM attribute also had the highest
correlation coefficient. From the high correlation coefficients of the features, it can be seen
that the features were evenly distributed among the components obtained from the wavelet
transform. It can be observed that the statistical features had lower correlation coefficients
compared to the other feature groups, and the highest coefficients were in the GLRLM and
GLCM features.

3.2. Results after Feature Selection

Before the classification process, the feature selection process was applied. Using the
Relieff algorithm, the best 25, 50, and 75 features were determined according to their rank
values. The first 25 (Group 1), second 25 (Group 2), and third 25 (Group 3) attribute groups
with the highest rank are listed in Table 6.
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Table 6. Top 75 features according to the Relieff method.

Group Feature Numbers

1 103, 105, 31, 28, 32, 5, 70, 127, 126, 135, 35, 134, 98, 102, 24, 69, 33,
30, 34, 37, 125, 29, 107, 66, 116

2 81, 89, 123, 82, 85, 109, 124, 115, 121, 129, 120, 122, 108, 51, 3, 114,
119, 128, 38, 106, 117, 4, 118, 101, 72

3 1, 112, 53, 52, 104, 47, 56, 41, 61, 113, 75, 90, 71, 91, 95, 23, 87, 130,
17, 55, 15, 16, 54, 46, 14

The metrics obtained from the classification process using the attributes in Group 1
in Table 6 are listed in Table 7. In total, the accuracy values ranged from 0.64 to 0.90 for
the 22 classifiers. The Fine Gaussian SVM method had the lowest accuracy, whereas the
Narrow Neural Network had the highest accuracy. The sensitivity value was 0.96, and
the recall value was 0.96, with the highest from the Kernel Naive Bayes method. While
the Decision Tree performed well in specificity and precision values, the Narrow Neural
Network performed better in Fscore and Gmean metrics. Medium and Coarse Gaussian
SVM were the best classifiers for the AUC value.

Table 7. Results for the best 25 parameters.

Classifiers
Performance Metrics

Accuracy Sensitivity Specificity Precision Fscore Gmean AUC

Decision
Tree

Fine Tree 0.88 0.84 0.91 0.88 0.86 0.88 0.87

Medium Tree 0.88 0.84 0.91 0.88 0.86 0.88 0.87

Coarse Tree 0.83 0.80 0.85 0.80 0.80 0.83 0.86

Naive
Bayes

Gaussian 0.85 0.80 0.88 0.83 0.82 0.84 0.95

Kernel 0.81 0.96 0.71 0.71 0.81 0.82 0.87

SVM

Linear 0.86 0.92 0.82 0.79 0.85 0.87 0.95

Quadratic 0.88 0.92 0.85 0.82 0.87 0.89 0.92

Cubic 0.86 0.92 0.82 0.79 0.85 0.87 0.93

Fine Gaussian 0.64 0.28 0.91 0.70 0.40 0.51 0.75

Medium Gaussian 0.88 0.92 0.85 0.82 0.87 0.89 0.96

Coarse Gaussian 0.85 0.84 0.85 0.81 0.82 0.85 0.96

kNN

Fine 0.71 0.72 0.71 0.64 0.68 0.71 0.71

Medium 0.86 0.88 0.85 0.81 0.85 0.87 0.94

Coarse 0.85 0.80 0.88 0.83 0.82 0.84 0.95

Cosine 0.83 0.76 0.88 0.83 0.79 0.82 0.93

Cubic 0.83 0.80 0.85 0.80 0.80 0.83 0.93

Weighted 0.85 0.88 0.82 0.79 0.83 0.85 0.94

Neural
Network

Narrow 0.90 0.92 0.88 0.85 0.88 0.90 0.91

Medium 0.83 0.80 0.85 0.80 0.80 0.83 0.9

Wide 0.86 0.88 0.85 0.81 0.85 0.87 0.9

Bilayered 0.81 0.84 0.79 0.75 0.79 0.82 0.9

Trilayered 0.88 0.92 0.85 0.82 0.87 0.89 0.88
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The performance evaluation values, as a result of the analysis in which the best
50 attributes obtained by combining the attributes in Group 1 and Group 2 in Table 6, were
used as the inputs listed in Table 8. There are four methods in the table with an accuracy
value of 0.9. Although three of these methods were included in the SVM methods, one of
them is from the Neural Network family. It can be said that the SVM method’s classifiers
gave better performance metrics results than other methods. The specificity, precision,
recall, Fscore, and Gmean values were 1.00, 1.00, 0.96, 0.91, and 0.92, respectively. The
highest AUC value was seen in the classifier Naive Bayes.

Table 8. Results for the best 50 parameters.

Classifiers
Performance Metrics

Accuracy Sensitivity Specificity Precision Fscore Gmean AUC

Decision
Tree

Fine Tree 0.88 0.84 0.91 0.88 0.86 0.88 0.87

Medium Tree 0.88 0.84 0.91 0.88 0.86 0.88 0.87

Coarse Tree 0.83 0.80 0.85 0.80 0.80 0.83 0.86

Naive
Bayes

Gaussian 0.88 0.88 0.88 0.85 0.86 0.88 0.97

Kernel 0.83 0.96 0.74 0.73 0.83 0.84 0.87

SVM

Linear 0.88 0.92 0.85 0.82 0.87 0.89 0.96

Quadratic 0.90 0.92 0.88 0.85 0.88 0.90 0.94

Cubic 0.90 0.88 0.91 0.88 0.88 0.90 0.96

Fine Gaussian 0.73 0.36 1.00 1.00 0.53 0.60 0.9

Medium Gaussian 0.92 0.96 0.88 0.86 0.91 0.92 0.96

Coarse Gaussian 0.85 0.84 0.85 0.81 0.82 0.85 0.96

kNN

Fine 0.78 0.68 0.85 0.77 0.72 0.76 0.77

Medium 0.86 0.84 0.88 0.84 0.84 0.86 0.95

Coarse 0.85 0.76 0.91 0.86 0.81 0.83 0.94

Cosine 0.86 0.84 0.88 0.84 0.84 0.86 0.96

Cubic 0.86 0.84 0.88 0.84 0.84 0.86 0.94

Weighted 0.88 0.88 0.88 0.85 0.86 0.88 0.95

Neural
Network

Narrow 0.86 0.92 0.82 0.79 0.85 0.87 0.87

Medium 0.86 0.88 0.85 0.81 0.85 0.87 0.91

Wide 0.92 0.96 0.88 0.86 0.91 0.92 0.92

Bilayered 0.83 0.80 0.85 0.80 0.80 0.83 0.89

Trilayered 0.88 0.92 0.85 0.82 0.87 0.89 0.89

The values in Table 9 were obtained when all of the features in Groups 1, 2, and 3
were included in the analysis. The highest accuracy value was obtained by combining
these three groups. The Medium Gaussian SVM method had the highest accuracy value
for this feature group, with a value of 0.93. This value was also the highest value among
all analyses. The medium Gaussian SVM classifier was the best classifier according to the
sensitivity, recall, Fscore, Gmean, AUC, and accuracy values. The highest precision value
was seen in Gaussian Naive Bayes, whereas the highest specificity value of 0.94 was seen in
Fine Gaussian.

As the number of features used in the analysis increased, the cost and the performance
values of many classifiers increased. Although the values of the metrics obtained as a
result of Naive Bayes, SVM, and kNN analyses increased close to a linear increase with
the increase in the number of features, it was seen that there was an increase in some of
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the Decision Tree and Neural Network classifiers and a decrease in others. Nevertheless,
it can be said that the classifiers included in the study achieved high success in detecting
coronary artery disease.

Table 9. Results for the best 75 parameters.

Classifiers
Performance Metrics

Accuracy Sensitivity Specificity Precision Fscore Gmean AUC

Decision
Tree

Fine Tree 0.83 0.80 0.85 0.80 0.80 0.83 0.84

Medium Tree 0.83 0.80 0.85 0.80 0.80 0.83 0.84

Coarse Tree 0.83 0.80 0.85 0.80 0.80 0.83 0.86

Naive
Bayes

Gaussian 0.90 0.88 0.91 0.88 0.88 0.90 0.98

Kernel 0.83 0.92 0.76 0.74 0.82 0.84 0.87

Support
Vector

Machine

Linear 0.90 0.92 0.88 0.85 0.88 0.90 0.96

Quadratic 0.88 0.88 0.88 0.85 0.86 0.88 0.95

Cubic 0.88 0.88 0.88 0.85 0.86 0.88 0.93

Fine Gaussian 0.69 0.36 0.94 0.82 0.50 0.58 0.91

Medium Gaussian 0.93 1.00 0.88 0.86 0.93 0.94 0.96

Coarse Gaussian 0.88 0.88 0.88 0.85 0.86 0.88 0.96

kNN

Fine 0.80 0.72 0.85 0.78 0.75 0.78 0.79

Medium 0.88 0.88 0.88 0.85 0.86 0.88 0.93

Coarse 0.80 0.64 0.91 0.84 0.73 0.76 0.94

Cosine 0.88 0.88 0.88 0.85 0.86 0.88 0.95

Cubic 0.88 0.88 0.88 0.85 0.86 0.88 0.93

Weighted 0.90 0.92 0.88 0.85 0.88 0.90 0.94

Neural
Network

Narrow 0.85 0.84 0.85 0.81 0.82 0.85 0.89

Medium 0.85 0.88 0.82 0.79 0.83 0.85 0.89

Wide 0.85 0.92 0.79 0.77 0.84 0.85 0.91

Bilayered 0.83 0.88 0.79 0.76 0.81 0.84 0.87

Trilayered 0.88 0.96 0.82 0.80 0.87 0.89 0.93

3.3. Comparison with Studies in the Literature

The comparative values of the findings in Tables 7–9 and the studies on the diagnosis
of heart disease from iris images in the literature are listed in Table 10. The table includes the
feature extraction methods, classifier names, and evaluation metrics used in existing studies.

Among existing studies, Gunawan et al. [24] obtained 91% accuracy using the SVM
classifier with GLCM features. Putra et al. [25] reached an accuracy value of 0.78 by using
the Neural Network with the same feature extraction method and also achieved 90% suc-
cess with the PCA method. Kusuma et al. [27] and Permatasari et al. [26] used the Black and
White Ratio and PCA methods for feature extraction, respectively, and performed classifica-
tion with the Thresholding and SVM methods, respectively. These studies did not include
performance metrics other than accuracy. In this study, using wavelet transform-based
statistical, GLCM, and GLRLM features and five different classifiers, a higher accuracy
value of 93% was obtained with the SVM classifier compared to other studies. In addition,
the second highest value was obtained in the NN classifier, with an accuracy value of
92%. In this study, unlike other studies, performance measurements such as sensitivity,
specificity, precision, Fscore, Gmean, and AUC were carried out in addition to accuracy.
These values indicate that the analysis successfully detected coronary artery disease.
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Table 10. Comparison to existing studies.

References
Feature

Extraction Classifier
Evaluation Metrics

Accuracy Sensitivity Specificity Precision Fscore Gmean AUC

Gunawan
et al. [24] GLCM SVM 0.91 - - - - - -

Putra et al.
[25]

GLCM NN 0.78 - - - - - -

PCA NN 0.90 - - - - - -

Kusuma
et al. [27] B&W Ratio Threshold 0.83 - - - - - -

Permatasari
et al. [26] PCA SVM 0.80 - - - - - -

This study
Statistical,

GLCM,
GLRLM

KNN 0.90 0.92 0.88 0.85 0.88 0.90 0.94

Naive Bayes 0.90 0.88 0.91 0.88 0.88 0.90 0.98

SVM 0.93 1.00 0.88 0.86 0.93 0.94 0.96

DT 0.88 0.84 0.91 0.88 0.86 0.88 0.87

NN 0.92 0.96 0.88 0.86 0.91 0.92 0.92

4. Conclusions

This study proposes a non-invasive method for detecting coronary artery disease
(CAD), as verified in an experiment that used the iris images of 198 volunteers. After
the iris pre-processing processes, a total of 136 statistical, GLCM, and GLRLM features
were extracted from the four subcomponents obtained by applying wavelet transform to
the heart region in the iris. The Relieff feature selection process was used to determine
the best 25, 50, and 75 features before classification. The classification phase was carried
out using 22 classifiers from five main classifier families. Accuracy, sensitivity, specificity,
precision, Fscore, Gmean, and AUC metrics were used to evaluate performance. The
SVM Medium Gaussian classifier achieved the highest accuracy value at 93%. According
to the results of the other classifiers, it can be said that the CAD classification of the
values of accuracy and other metrics yielded successful results. It can be stated that the
proposed method for the detection of CAD from the iris is quite successful. The proposed
method can be used to support telediagnostic applications for coronary artery disease in
telemedicine systems. Thus, information about the patient’s CAD can be obtained by using
the patient’s iris images in order to make a preliminary assessment before performing daily
clinical practice.

This study provides a reference for detecting CAD from iris images. In future studies,
the relationship of various heart diseases, such as heart failure, with iris analysis can be
examined. Performance improvement can be made by trying different feature extraction
and machine learning methods and by detecting various diseases using convolutional
neural networks.
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